Add like
Add dislike
Add to saved papers

Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn(2+).

PURPOSE: To provide dose-response data for the safe and effective use of MnCl(2) for manganese (Mn(2+)) -enhanced MRI (MEMRI) of the visual pathway.

MATERIALS AND METHODS: Retinal ganglion cell (RGC) toxicity, CNR in MEMRI, axon density resolution for MEMRI, mode of axonal transport and clearance of Mn(2+) from the vitreous after ivit were investigated. After 0, 30, 150, 300, 1500, and 3000 nmol ivit MnCl(2), neural toxicity was measured by counting surviving RGC back-filled with FluroGold (FG), CNR of the vitreous body and visual pathway by three-dimensional (3D) MEMRI, resolution of ON axon density by correlating CNR with axon density, and axonal transport of Mn(2+) by studying CNR in 3D MEMRI of the ON after ion of 200 nmol MnCl(2).

RESULTS: There were no changes in RGC density after ivit MnCl(2) 0 were recorded distally from the ion site, but there was no signal in the retina. At ivit doses >1500 nmol, clearance from the vitreous body was impaired.

CONCLUSION: The optimal dose for MEMRI of the rat visual pathway was found to be 150-300 nmol ivit MnCl(2). Higher doses are toxic, causing RGC death, impair active clearance from the vitreous, and loss of Mn(2+) enhancement throughout the visual pathway. Mn(2+) traffic within RGC axons is mediated mainly by anterograde transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app