JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis.

Osteoarthritis (OA) is a progressively degenerative joint condition that is influenced by various metabolic and structural factors. The canonical Wnt-frizzled-beta-catenin pathway has been implicated in the pathogenesis of OA. Products of the Wnt, frizzled, secreted frizzled-related protein (sFRP), Dickkopf and LDL-receptor-related protein gene families have crucial roles in the development and maintenance of bone, cartilage and joints. Increased levels of beta-catenin have been observed in degenerative cartilage, suggesting that a diminished capacity to limit Wnt signaling might contribute to cartilage loss. Polymorphisms in genes involved in Wnt signaling-particularly in the gene encoding sFRP-3-are associated with an increased susceptibility to the development of OA. At least one of these polymorphisms in the gene encoding sFPR-3 is associated with a reduced ability to limit beta-catenin signaling. In addition, the canonical Wnt signaling pathway is influenced by local factors, including alterations in glycosaminoglycan sulfation, cartilage matrix content, transforming growth factor beta and vitamin D. A higher circulating level of the Wnt inhibitor Dickkopf-1, for instance, is associated with slowed progression of hip OA. Hence, the sum of local and systemic factors contributes to the outcome of the Wnt-frizzled pathways. Further investigation is needed to fully define the role of Wnt signaling in OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app