JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson's disease.

Brain 2008 October
Corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) are two neurodegenerative disorders within the category of tauopathies, which must be considered in differential diagnosis of Parkinson's disease. Although specific clinical and neuroradiological features help to guide the clinician to a likely diagnosis of Parkinson's disease, CBD or PSP, differential diagnosis remains difficult. The aim of our study was to analyse apparent diffusion coefficient (ADC(ave)) maps from patients with clinical diagnosis of CBD (corticobasal syndrome, CBS), classical phenotype of PSP (Richardson's syndrome, RS) and Parkinson's disease (PD) in order to identify objective markers to discriminate between these groups. Thirteen Parkinson's disease patients, 10 RS patients, 7 CBS patients and 9 healthy volunteers were recruited and studied in a 1.5 T MR scanner. Axial diffusion-weighted images were obtained and the ADC(ave) map was generated. Regions of interest (ROIs) included mesencephalon, corpus callosum and left and right superior cerebellar peduncle (SCP), thalamus, caudate, putamen, pallidus, posterior limb of internal capsule, frontal and parietal white matter. Histograms of ADC(ave) were generated for all voxels in left and right cerebral hemispheres and in left and right deep grey matter regions separately, and the 50th percentile values (medians) were determined. The ratio of the smaller to the larger median value (symmetry ratio) was calculated for left and right hemispheres and for left and right deep grey matter regions (1 = perfect symmetry). Putaminal ADC(ave) values in CBS and RS were significantly greater than those in Parkinson's disease and healthy volunteers, but could not distinguish CBS from RS patients. In CBS patients, the values of the medians of cerebral hemispheres histograms were significantly higher than those in RS, Parkinson's disease and healthy volunteers, while the hemispheric symmetry ratio in CBS (0.968, range 0.952-0.976) was markedly reduced compared with RS (0.993, range 0.992-0.994), Parkinson's disease (0.991, range 0.988-0.993) and healthy controls (0.990, range 0.988-0.993). The hemispheric symmetry ratio differentiated CBS patients from RS and Parkinson's disease patients with a sensitivity and specificity of 100%. In RS patients, the ADC(ave) values of the SCPs were significantly greater than those in Parkinson's disease and healthy volunteers. Our findings confirm that putaminal ADC(ave) values evaluation provides a good discrimination between Parkinson's disease and atypical parkinsonisms, including RS and CBS. Furthermore, diffusion-weighted imaging, by detecting the brain microstructural correlates of the typical asymmetric signs and symptoms in CBS and the SCP involvement in RS, was shown to aid characterization and differentiation of atypical parkinsonism.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app