JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Role of bone marrow stromal cells in the generation of human CD8+ regulatory T cells.

Human Immunology 2008 November
Fibroblast-like stromal cells exert a strong inhibitory effect on lymphocyte proliferation, both directly by interacting with responding lymphocytes and indirectly by inducing the generation of regulatory T cells. Indeed, upon triggering via the CD3/TCR complex, highly effective CD8(+)regulatory cells (CD8(+)Reg(c)) are generated from cocultures of peripheral blood CD8(+)T cells and bone-marrow-derived stromal cells. When cell-to-cell interactions occur, CD8(+)Reg(c) strongly inhibit lymphocyte proliferation at a ratio of 1:1 to 1:100 between CD8(+)Reg(c) and responding lymphocytes. Phenotypic analysis indicated that CD8(+)Reg(c) are CD25(+)CD28(+) and express low levels of mRNA for Foxp3 but they do not bear CTLA4 and glucocorticoid-induced tumor necrosis factor receptor antigens. Soluble mediators such as interleukin-10, transforming growth factor-beta, and prostaglandin E(2) are not involved in the generation of CD8(+)Reg(c) from CD8(+) precursors or in the immunosuppressive mechanism mediated by CD8(+)Reg(c) on lymphocyte proliferation. Cyclosporin A (CSA) slightly downregulated generation of CD8(+)Reg(c) indicating that only a small fraction of precursors of CD8(+)Reg(c) are sensitive to this immune-suppressive drug. Along this line, treatment of effector CD8(+)Reg(c)with CSA does not affect their immunosuppressive effect, indicating that the molecular mechanism of CD8(+)Reg(c)-mediated regulation is independent of the function of CSA biochemical target molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app