JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microinjection of morphine into thalamic nucleus submedius depresses bee venom-induced inflammatory pain in the rat.

Previous studies have provided evidence of the existence of a pain modulatory feedback pathway consisting of thalamic nucleus submedius (Sm)-ventrolateral orbital cortex-periaqueductal grey pathway, which is activated during acute pain and leads to depression of transmission of nociceptive information in the spinal dorsal horn. The aim of this study was to test the hypothesis that morphine microinjection into the Sm decreased spontaneous pain and bilateral thermal hyperalgesia, as well as ipsilateral mechanical allodynia, induced by subcutaneous injections of bee venom into the rat hind paw. Morphine (1.0, 2.5 or 5.0 microg in 0.5 microL) injected into the Sm, contralateral to the bee venom-injected paw, depressed spontaneous nociceptive behaviour in a dose-dependent manner. Furthermore, morphine significantly decreased bilateral thermal hyperalgesia and ipsilateral mechanical allodynia 2 h after bee venom injection. These morphine-induced effects were antagonized by 1.0 microg naloxone (an opioid antagonist) microinjected into the Sm 5 min before morphine administration. The results provided further support for the important role of the Sm and Sm-opioid receptors in inhibiting nociceptive behaviour and indicated for the first time that Sm opioid receptors were also effective in inhibiting the hypersensitivity provoked by bee venom-induced inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app