JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax.

Hepatocyte apoptosis in addition to oxidative stress could be a key component in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms of hepatocellular apoptotic response associated with oxidative stress have not been investigated in high-fat diet (HFD)-induced NASH models. In this study, Sprague-Dawley rats were fed either a Lieber-DeCarli control diet (CD; 35% energy from fat) or a HFD (71% energy from fat) for 6 wk. Pathologic lesions, lipid peroxidation products, and apoptotic hepatocytes in the liver were examined. The expressions of hepatic tumor necrosis factor-alpha (TNFalpha) and protein concentrations of cleaved caspase-3, cytochrome p4502E1 (CYP2E1), phosphorylated c-Jun NH(2)-terminal kinase (JNK), Bax, Bcl-2, and Bcl-xl were measured. Results showed that the key histological features of NASH, including steatosis, inflammatory cell infiltration, and ballooning degeneration of hepatocytes, were induced by HFD feeding, with increased hepatic TNFalpha mRNA expression. HFD-fed rats had elevated lipid peroxidation products and CYP2E1 protein in the liver. The apoptotic hepatocytes were significantly greater in livers of rats fed HFD than in those fed CD, and these were associated with a higher level of cleaved caspase-3. In addition, HFD feeding increased both hepatic phosphorylated JNK and pro-apoptotic Bax but did not affect anti-apoptotic Bcl-2 and Bcl-xl compared with CD feeding. These data indicate that the increased oxidative stress and its associated JNK activation as well as an imbalance of pro- and anti-apoptotic proteins in the Bcl-2 family all contribute to high hepatocyte apoptosis that may play an important role in the pathogenesis of NASH in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app