JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

European Society of Biomechanics S.M. Perren Award 2008: using temporal trends of 3D bone micro-architecture to predict bone quality.

Journal of Biomechanics 2008 October 21
In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography (microCT) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N=5) or sham operated (SHAM; N=6). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, microFE) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 microm. Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; -1.1%, 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus (E(1); 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app