Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney.

Vitamin E was previously reported to reduce calcium oxalate (CaOx) crystal formation. This study explored whether vitamin E deficiency affects intrarenal oxidative stress and accelerates crystal deposition in hyperoxaluria. The control (C) group of rats received a standard diet and drinking water, while the experimental groups received 0.75% ethylene glycol (EG) in drinking water for 42 days. Of the latter, one group received a standard diet (EG group), one received a low-vitamin E (LE) diet (EG+LE group), and the last received an LE diet with vitamin E supplement (4 mg) (EG+LE+E group). The C+LE and C+LE+E groups were the specific controls for the last two experimental groups, respectively. In a separate experiment, EG and EG+LE rats were studied on days 3-42 to examine the temporal relationship between oxidative change and crystal formation. Urinary biochemistry and activity/levels of antioxidative and oxidative enzymes in glomeruli and tubulointerstitial specimens (TIS) were examined. In EG rats, CaOx crystal accumulation was associated with low antioxidative enzyme activity in TIS and with increased oxidative enzyme expression in glomeruli. In the EG+LE group, marked changes in antioxidative and oxidative enzyme levels were seen and correlated with massive CaOx deposition and tubular damage. The increased oxidative stress seen with EG+LE treatment was largely reversed by vitamin E supplementation. A temporal study showed that decrease in antioxidative defense and increased free radical formation in the EG+LE group occurred before crystal deposition. This study shows that low vitamin E disrupts the redox balance and causes cell death, thereby favoring crystal formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app