Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle.

Diabetes 2008 December
OBJECTIVE: Cytokines are elevated in various insulin-resistant states, including type 2 diabetes and obesity, although the contribution of interleukin-6 (IL-6) in the induction of these diseases is controversial.

RESEARCH DESIGN AND METHODS: We analyzed the impact of IL-6 on insulin action in murine primary myocytes, skeletal muscle cell lines, and mice (wild type and protein-tyrosine phosphatase 1B [PTP1B] deficient).

RESULTS: IL-6 per se increased glucose uptake by activating serine/threonine protein kinase 11 (LKB1)/AMP-activated protein kinase/protein kinase B substrate of 160 kDa (AS160) pathway. A dual effect on insulin action was observed when myotubes and mice were exposed to this cytokine: additive with short-term insulin (increased glucose uptake and systemic insulin sensitivity) but chronic exposure produced insulin resistance (impaired GLUT4 translocation to plasma membrane and defects in insulin signaling at the insulin receptor substrate 1 [IRS-1] level). Three mechanisms seem to operate in IL-6-induced insulin resistance: activation of c-Jun NH(2)-terminal kinase 1/2 (JNK1/2), accumulation of suppressor of cytokine signaling 3 (socs3) mRNA, and an increase in PTP1B activity. Accordingly, silencing JNK1/2 with either small interfering RNA or chemical inhibitors impaired phosphorylation of IRS-1 (Ser307), restored insulin signaling, and normalized insulin-induced glucose uptake in myotubes. When using a pharmacological approach, liver X receptor agonists overcome IL-6-induced insulin resistance by producing downregulation of socs3 and ptp1b gene expression. Finally, the lack of PTP1B confers protection against IL-6-induced insulin resistance in skeletal muscle in vitro and in vivo, in agreement with the protection against the IL-6 hyperglycemic effect observed on glucose and insulin tolerance tests in adult male mice.

CONCLUSIONS: These findings indicate the important role of IL-6 in the pathogenesis of insulin resistance and further implicate PTP1B as a potential therapeutic target in the treatment of type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app