JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A nonautonomous role for retinal frizzled-5 in regulating hyaloid vitreous vasculature development.

PURPOSE: Frizzled-5 (Fzd5) is expressed in the developing retina of multiple species and appears to play species-specific roles during eye development. The present study analyzed the effects of tissue-specific deletion of Fzd5 on mammalian eye development.

METHODS: To generate Fzd5 conditional knockout (CKO) mice, Fzd5(+/-) mice carrying the Six3-Cre transgene were crossed with Fzd5(LoxP/LoxP) mice. To determine which cell lineages in the eye had Cre recombinase activity, Six3-Cre transgenic mice were crossed with ROSA-26 reporter mice, and lacZ activity was assayed. Histologic analysis, immunofluorescence, and TUNEL labeling were performed from embryonic day (E)12.5 to postnatal stages to analyze vascularization, cell proliferation, retinal organization, and apoptosis.

RESULTS: On conditional disruption of Fzd5 specifically in the retina, but not in vitreous hyaloid vasculature (VHV), an abnormal accumulation consisting of pericytes and endothelial cells was observed in the vitreous as early as E12.5. The abundant retrolental cells persisted into postnatal stages and appeared as a pigmented intravitreal mass. In Fzd5 CKO mice there was failure of normal apoptosis of the VHV, and cells in the persistent VHV were maintained in the cell cycle up to postnatal day 23. Moreover, morphogenesis of the retina adjacent to the vasculature was disrupted, leading to retinal folds, detachment, and abnormal lamination. This phenotype is similar to that of human eye disease persistent hyperplastic primary vitreous (PHPV).

CONCLUSIONS: Selective loss of Fzd5 in the retina results in PHPV and retinal defects through an apparently cell-nonautonomous effect, revealing a potential requirement for retina-derived signals in regulating the development of the VHV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app