JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.

Methanococcus maripaludis, an H(2)- and formate-utilizing methanogen, produced H(2) at high rates from formate. The rates and kinetics of H(2) production depended upon the growth conditions, and H(2) availability during growth was a major factor. Specific activities of resting cells grown with formate or H(2) were 0.4 to 1.4 U mg(-1) (dry weight). H(2) production in formate-grown cells followed Michaelis-Menten kinetics, and the concentration of formate required for half-maximal activity (K(f)) was 3.6 mM. In contrast, in H(2)-grown cells this process followed sigmoidal kinetics, and the K(f) was 9 mM. A key enzyme for formate-dependent H(2) production was formate dehydrogenase, Fdh. H(2) production and growth were severely reduced in a mutant containing a deletion of the gene encoding the Fdh1 isozyme, indicating that it was the primary Fdh. In contrast, a mutant containing a deletion of the gene encoding the Fdh2 isozyme possessed near-wild-type activities, indicating that this isozyme did not play a major role. H(2) production by a mutant containing a deletion of the coenzyme F(420)-reducing hydrogenase Fru was also severely reduced, suggesting that the major pathway of H(2) production comprised Fdh1 and Fru. Because a Deltafru-Deltafrc mutant retained 10% of the wild-type activity, an additional pathway is present. Mutants possessing deletions of the gene encoding the F(420)-dependent methylene-H(4)MTP dehydrogenase (Mtd) or the H(2)-forming methylene-H(4)MTP dehydrogenase (Hmd) also possessed reduced activity, which suggested that this second pathway was comprised of Fdh1-Mtd-Hmd. In contrast to H(2) production, the cellular rates of methanogenesis were unaffected in these mutants, which suggested that the observed H(2) production was not a direct intermediate of methanogenesis. In conclusion, high rates of formate-dependent H(2) production demonstrated the potential of M. maripaludis for the microbial production of H(2) from formate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app