JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing.

Clinical Biomechanics 2008 December
BACKGROUND: Recent human performance studies have shown that various kinematic and kinetic parameters may be implicated in non-contact anterior cruciate ligament (ACL) injury during landing and cutting. In this paper, a phenomenological sagittal plane model was used to estimate the ACL tension during drop landing from the net knee moments and forces, obtained from inverse dynamics and electromyography.

METHODS: Model parameters were determined with data from anatomical and ACL loading studies of cadaveric specimens. The model was used to process averaged data from 60 cm drop landing trials of sixteen healthy females.

FINDINGS: ACL loading during drop landing occurred during the between toe and heel impact with a peak tension of 0.15 body weight. The factors that contributed to ACL tension were the patellar tendon force and the tibial slope in combination with the joint axial loads. Factors responsible for reducing ACL tension were hamstring and ground reaction forces.

INTERPRETATION: Sagittal plane results largely confirmed a previous forward dynamics study of landing. The knee appeared to be largely stabilized against abduction moments due to the large axial loads present during drop landing for typical landing trials. Rotational moments were small in drop landing and contributed little to ACL tension. Estimates from this model can be used in human performance studies to determine the relative amount of ACL tension produced in different landing scenarios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app