Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function

HaiFang Yin, Hong M Moulton, Yiqi Seow, Corinne Boyd, Jordan Boutilier, Patrick Iverson, Matthew J A Wood
Human Molecular Genetics 2008 December 15, 17 (24): 3909-18
Antisense oligonucleotides (AOs) have the potential to induce functional dystrophin protein expression via exon skipping by restoring in-frame transcripts in the majority of patients suffering from Duchenne muscular dystrophy (DMD). AOs of morpholino phosphoroamidate (PMO) and 2'-O-methyl phosphorothioate RNA (2'Ome RNA) chemistry have been shown to restore dystrophin expression in skeletal muscle but not in heart, following high-dose systemic delivery in murine models of muscular dystrophy (mdx). Exploiting the cell transduction properties of two basic arginine-rich cell penetrating peptides, we demonstrate widespread systemic correction of dystrophin expression in body-wide muscles and cardiac tissue in adult dystrophic mdx mice, with a single low-dose injection of peptide-conjugated PMO AO. This approach was sufficient to restore uniform, high-level dystrophin protein expression in peripheral muscle and cardiac tissue, with robust sarcolemmal relocalization of the dystrophin-associated protein complex and functional improvement in muscle. Peptide-conjugated AOs therefore have significant potential for systemic correction of the DMD phenotype.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"