JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel rich source of human mesenchymal stem cells from the debris of bone marrow samples.

The debris from human bone marrow (BM) samples is generally filtered out and discarded prior to isolation of mesenchymal stem cells (MSCs). The purpose of this study is to develop a method to harvest MSCs from the debris and investigate their biological characteristics compared with the marrow counterparts. The BM tissue fragments were digested with collagenase and this treatment yielded mononuclear cells half to those from the corresponding filtered BM. The frequencies of colony-forming unit-fibroblast in these two cell populations were not significantly different. MSCs of two origins exhibited similar morphological and phenotypic features. Fluorescent dye-dilution assay showed that they grew at comparable rates both in the primary and passaging cultures. Further, they could be induced into osteoblasts, chondroblasts and adipocytes, as revealed by histological and molecular examinations. Thus, BM tissue fragments may serve as a new source of MSCs in the settings of bench experiments and clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app