Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms-comparing common calibration approaches

Carsten Ravn, Erik Skibsted, Rasmus Bro
Journal of Pharmaceutical and Biomedical Analysis 2008 November 4, 48 (3): 554-61
Near-infrared chemical imaging (NIR-CI) is the fusion of near-infrared spectroscopy and image analysis. It can be used to visualize the spatial distribution of the chemical compounds in a sample (providing a chemical image). Each sample measurement generates a hyperspectral data cube containing thousands of spectra. An important part of a NIR-CI analysis is the data processing of the hyperspectral data cube. The aim of this study was to compare the ability of different commonly used calibration methods to generate accurate chemical images. Three common calibration approaches were compared: (1) using single wavenumber, (2) using classical least squares regression (CLS) and (3) using partial least squares regression (PLS1). Each method was evaluated using two different preprocessing methods. A calibration data set of tablets with five constituents was used for analysis. Chemical images of the active pharmaceutical ingredient (API) and the two major excipients cellulose and lactose in the formulation were made. The accuracy of the generated chemical images was evaluated by the concentration prediction ability. The most accurate predictions for all three compounds were generated by PLS1. The drawback of PLS1 is that it requires a calibration data set and CLS, which does not require a calibration data set, therefore proved to be an excellent alternative. CLS also generated accurate predictions and only requires the pure compound spectrum of each constituent in the sample. All three calibration approaches were found applicable for hyperspectral image analysis but their relevance of use depends on the purpose of analysis and type of data set. As expected, the single wavenumber method was primarily found useful for compounds with a distinct spectral band that was not overlapped by bands of other constituents. This paper also provides guidance for hyperspectral image (or NIR-CI) analysis describing each of the typical steps involved.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"