Add like
Add dislike
Add to saved papers

Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance.

The aim of this study was to investigate the accuracy and reproducibility of the quantification of left ventricular (LV) function by real-time 3-dimensional echocardiography (RT3DE) using current state-of-the-art hardware and software. Compared with cardiac magnetic resonance (CMR), previous generations of hardware and software for RT3DE significantly underestimated LV volumes partly because of inherent factors such as limited spatial and temporal resolution. Also, RT3DE volumes were compared with short-axis CMR data, whereas a combined short-axis and long-axis analysis is known to be superior. Twenty-four subjects (mean age 51 +/- 12 years, 17 men) in sinus rhythm and with good to excellent 2-dimensional image quality underwent RT3DE and CMR within 1 day. The acquisition of RT3DE data was done with current state-of-the-art hardware and software. Two blinded experts performed off-line LV volume analysis. Global LV volumes were determined from semiautomated border detection on the basis of endocardial speckle tracking with biplane projections using QLAB version 6.0. Volumes derived by magnetic resonance imaging were quantified from combined short-axis and long-axis series. The volume-rate on RT3DE was 33 +/- 8 Hz (range 19 to 42). Excellent correlations were found (R2 > or = 0.97) between CMR and RT3DE for global LV end-diastolic volume, LV end-systolic volume, the LV ejection fraction, and LV phase volumes (24 phases/cardiac cycle). Bland-Altman analyses showed mean differences of -7.1 ml, -4.2 ml, 0.2%, and -5.8 ml and 95% limits of agreement of +/-19.7 ml, +/-8.3 ml, +/-6.2%, and +/-15.4 ml for global LV end-diastolic volume, LV end-systolic volume, the LV ejection fraction, and LV phase volumes, respectively. Interobserver variability was 5.2% for global LV end-diastolic volume, 6.4% for LV end-systolic volume, and 7.6% for the LV ejection fraction. In conclusion, in patients with good acoustic windows, RT3DE using state-of-the-art technology provides accurate and reproducible measurements of global LV volumes, LV volume changes over time, and the LV ejection fraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app