Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Mammary epithelial cell transformation is associated with deregulation of the vitamin D pathway.

The vitamin D endocrine system mediates anti-proliferative and pro-differentiating signaling in multiple epithelial tissues, including mammary gland and breast tumors. The vitamin D metabolite 1alpha,25(OH)2D3 mediates growth inhibitory signaling via activation of the vitamin D receptor (VDR), a ligand dependent transcription factor. 1alpha,25(OH)(2)D3 is synthesized from 25(OH)D3 (the major circulating form of the vitamin) by the mitochondrial enzyme CYP27b1 in renal and other tissues. Human mammary epithelial (HME) cells express VDR and CYP27b1 and undergo growth inhibition when exposed to physiological concentrations of 25(OH)D3, suggesting that autocrine or paracrine vitamin D signaling contributes to maintenance of differentiation and quiescence in the mammary epithelium. In the current studies we tested the hypothesis that cancer cells would exhibit reduced sensitivity to vitamin D mediated negative growth regulation. We used a series of progressively transformed HME cell lines expressing known oncogenic manipulations to study the effects of transformation per se on the vitamin D pathway. We report that mRNA and protein levels of VDR and CYP27b1 were reduced greater than 70% upon stable introduction of known oncogenes (SV40 T antigens and H-rasV12) into HME cells. Oncogenic transformation was also associated with reduced 1alpha,25(OH)2D3 synthesis, and cellular sensitivity to growth inhibition by 1alpha,25(OH)2D3 and 25(OH)D3 was decreased approximately 100-fold in transformed cells. These studies provide evidence that disruption of the vitamin D signaling pathway occurs early in the cancer development process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app