JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway.

Genistein, an isoflavonoid present in soybeans, exhibits anti-carcinogenic effects. Several studies have shown that genistein inhibits cell proliferation and triggers apoptosis in human breast cancer cells. In this study, we assessed the role of the MEK-ERK cascade in the regulation of genistein-mediated cell apoptosis in MDA-MB-231 cells. The results indicate that genistein, in a concentration-dependent manner, suppresses the protein levels of MEK5, total ERK5, and phospho-ERK5, effects that are consistent with inhibition of cell growth and induction of apoptosis. Exposure of these cells to genistein results in a concentration-dependent decrease in NF-kappaB/p65 protein levels and DNA-binding activity of NF-kappaB. Genistein down-regulates Bcl-2 and up-regulates Bax. NF-kappaB binding sites are present in the promoter of Bcl-2, suggesting that genistein might inhibit the expression of Bcl-2 through down-regulation of NF-kappaB. Exposure of MDA-MB-231 cells to genistein results in cleavage of caspase-3 and induction of caspase-3 activity in a concentration-dependent manner. Genistein inhibits NF-kappaB activity via the MEK5/ERK5 pathway; it also inhibits cell growth and induces apoptosis. In conclusion, inhibition of the MEK5/ERK5/NF-kappaB pathway may be an important mechanism by which genistein suppresses cell growth and induces apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app