EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network.

A hand held device has been designed for the immunomagnetic detection and quantification of the pathogen Escherichia coli O157:H7 in food and clinical samples. In this work, a technology to manufacture a Lab on a Chip that integrates a 3D microfluidic network with a microfabricated biosensor has been developed. With this aim, the sensing film optimization, the design of the microfluidic circuitry, the development of the biological protocols involved in the measurements and, finally, the packaging needed to carry out the assays in a safe and straightforward way have been completed. The biosensor is designed to be capable to detect and quantify small magnetic field variations caused by the presence of superparamagnetic beads bound to the antigens previously immobilized on the sensor surface via an antibody-antigen reaction. The giant magnetoresistive multilayer structure implemented as sensing film consists of 20[Cu(5.10nm)/Co(2.47 nm)] with a magnetoresistance of 3.20% at 235Oe and a sensitivity up to 0.06 Omega/Oe between 150Oe and 230Oe. Silicon nitride has been selected as optimum sensor surface coating due to its suitability for antibody immobilization. In order to guide the biological samples towards the sensing area, a microfluidic network made of SU-8 photoresist has been included. Finally, a novel packaging design has been fabricated employing 3D stereolithographic techniques. The microchannels are connected to the outside using standard tubing. Hence, this packaging allows an easy replacement of the used devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app