JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin.

Many neurodegenerative diseases are characterized by deposits of ubiquitinated and aberrant proteins, suggesting a failure of the ubiquitin-proteasome system (UPS). The aberrant ubiquitin UBB(+1) is one of the ubiquitinated proteins accumulating in tauopathies such as Alzheimer's disease (AD) and polyglutamine diseases such as Huntington's disease. We have generated UBB(+1) transgenic mouse lines with post-natal neuronal expression of UBB(+1), resulting in increased levels of ubiquitinated proteins in the cortex. Moreover, by proteomic analysis, we identified expression changes in proteins involved in energy metabolism or organization of the cytoskeleton. These changes show a striking resemblance to the proteomic profiles of both AD brain and several AD mouse models. Moreover, UBB(+1) transgenic mice show a deficit in contextual memory in both water maze and fear conditioning paradigms. Although UBB(+1) partially inhibits the UPS in the cortex, these mice do not have an overt neurological phenotype. These mouse models do not replicate the full spectrum of AD-related changes, yet provide a tool to understand how the UPS is involved in AD pathological changes and in memory formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app