JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel human neutrophil agonistic properties of arsenic trioxide: involvement of p38 mitogen-activated protein kinase and/or c-jun NH2-terminal MAPK but not extracellular signal-regulated kinases-1/2.

Arsenic trioxide (ATO) is known for treating acute promyelocytic leukemia and for inducing apoptosis and mitogen-activated protein kinases (MAPKs) in promyelocytes and cancer cells. We recently reported that ATO induces neutrophil apoptosis. The aim of this study was to establish whether or not ATO recruits MAPKs in neutrophils, as well as to further investigate its agonistic properties. We found that ATO activates p38 and that, unlike H2O2, this response was not inhibited by exogenous catalase. Also, we demonstrated that ATO-induced p38 activation occurs before H2O2 generation and without a calcium burst. We next established that ATO recruits c-jun NH2-terminal (JNK) but not extracellular signal-regulated kinase 1 and 2 (Erk-1/2). Using pharmacological inhibitors, we found that the proapoptotic activity of ATO occurs by a MAPK-independent mechanism. In contrast, the ability of ATO to enhance adhesion, migration, phagocytosis, release, and activity of gelatinase and degranulation of secretory, specific, and gelatinase, but not azurophilic granules, is dependent upon activation of p38 and/or JNK. This is the first study establishing that ATO possesses important agonistic properties in human neutrophils. Given the central role of neutrophils in various inflammatory disorders, we propose that ATO might have broader therapeutic implications in clinics, especially for regulating inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app