REVIEW
Add like
Add dislike
Add to saved papers

Peters'-plus syndrome is a congenital disorder of glycosylation caused by a defect in the beta1,3-glucosyltransferase that modifies thrombospondin type 1 repeats.

Genetic defects in glycosyltransferases are responsible for a number of developmental defects and diseases known as congenital disorders of glycosylation (CDGs). Peters'-plus syndrome, a rare autosomal recessive disorder, is now known to be a CDG. This syndrome is characterized by a specific malformation of the eye that includes corneal opaqueness and iridocorneal adhesions (Peters' anomaly). Affected individuals are short in stature and have short limbs, and may have cleft lip/palate, defects in the central nervous system, heart, and various other organs. The phenotype varies in severity, ranging from death in early childhood to a general delay in growth and development, and is often associated with mental retardation. The mutations responsible for Peters'-plus syndrome inactivate a beta1,3-glucosyltransferase whose function is to add a glucose moiety to O-linked fucose, forming a rare glucose-beta1,3-fucose disaccharide. This disaccharide modification is specific to thrombospondin type 1 repeats (TSRs), domains found in extracellular proteins that function in cell-cell and cell-matrix interactions and signalling. Some ninety human proteins contain TSRs, but thus far the disaccharide has been demonstrated on only thrombospondin 1, properdin, F-spondin, ADAMTS-13, and ADAMTSL-1. These proteins perform essential functions in embryonic development, tissue remodelling, angiogenesis, neurogenesis, and complement activation. Identification of the beta1,3-glucosyltransferase and its substrate proteins is a key step towards understanding their roles in human development, and to uncovering the molecular and cellular mechanisms underlying the clinical manifestations of Peters'-plus syndrome.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app