Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats.

The effects of the cutaneous input on the formation of the locomotor pattern in conditions of epidural stimulation of the spinal cord in decerebrate cats were studied. Locomotor activity was induced by rhythmic stimulation of the dorsal surface of spinal cord segments L4-L5 at a frequency of 3-5 Hz. Electromyograms (EMG) recorded from the antagonist muscles quadriceps, semitendinosus, tibialis anterior, and gastrocnemius lateralis were recorded, along with the kinematics of stepping movements during locomotion on a moving treadmill and reflex responses to single stimuli. Changes in the pattern of reactions observed before and after exclusion of cutaneous receptors (infiltration of lidocaine solution at the base of the paw or irrigation of the paw pads with chlorothane solution) were assessed. This treatment led to impairment of the locomotor cycle: the paw was placed with the rear surface downward and was dragged along in the swing phase, and the duration of the stance phase decreased. Exclusion of cutaneous afferents suppressed the polysynaptic activity of the extensor muscles and the distal flexor muscle of the ipsilateral hindlimb during locomotion evoked by epidural stimulation of the spinal cord. The effects of exclusion of cutaneous afferents on the monosynaptic component of the EMG response were insignificant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app