JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Guidance of block needle insertion by electrical nerve stimulation: a pilot study of the resulting distribution of injected solution in dogs.

Anesthesiology 2008 September
BACKGROUND: Little is known regarding the final needle tip location when various intensities of nerve stimulation are used to guide block needle insertion. Therefore, in control and hyperglycemic dogs, the authors examined whether lower-intensity stimulation results in injection closer to the sciatic nerve than higher-threshold stimulation.

METHODS: During anesthesia, the sciatic nerve was approached with an insulated nerve block needle emitting either 1 mA (high-current group, n = 9) or 0.5 mA (low-current group, n = 9 in control dogs and n = 6 in hyperglycemic dogs). After positioning to obtain a distal motor response, the lowest current producing a response was identified, and ink (0.5 ml) was injected. Frozen sections of the tissue revealed whether the ink was in contact with the epineurium of the nerve, distant to it, or within it.

RESULTS: In control dogs, the patterns of distribution using high-threshold (final current 0.99 +/- 0.03 mA, mean +/- SD) and low-threshold (final current 0.33 +/- 0.08 mA) stimulation equally showed ink that was in contact with the epineurium or distant to it. One needle placement in the high-threshold group resulted in intraneural injection. In hyperglycemic dogs, all needle insertions used a low-threshold technique (n = 6, final threshold 0.35 +/- 0.08 mA), and all resulted in intraneural injections.

CONCLUSIONS: In normal dogs, current stimulation levels in the range of 0.33-1.0 mA result in needle placement comparably close to the sciatic nerve but do not correlate with distance from the target nerve. In this experimental design, low-threshold electrical stimulation does not offer satisfactory protection against intraneural injection in the presence of hyperglycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app