Add like
Add dislike
Add to saved papers

Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways.

Oridonin, a diterpenoid isolated from Rabdosia rubescences, could induce apoptosis through the generation of reactive oxygen species (ROS) in human hepatoma HepG2 cells. p53, a specific inhibitor of pifithrin alpha (PFT alpha), markedly inhibited ROS generation and apoptosis, showing that p53 was responsible for the cytotoxity of oridonin through mediation by ROS. Moreover, the ROS activated the p38 kinase, which in turn promoted the activation of p53, as verified by evidence showing that the ROS scavenger N-acetyl-cysteine (NAC) not only blocked the phosphorylation of p38 but also partially inhibited the activation of p53, and the p38 inhibitor SB203580 reduced the activation of p53 as well. Mitochondria were either the sources or the targets of ROS. This study showed that oridonin stimulated mitochondrial transmembrane permeabilization in a ROS-dependent manner because NAC almost thoroughly reversed the drop of mitochondrial transmembrane potential (Deltapsim) and the release of cytochrome c from the mitochondrial inter-membrane space into cytosol. Furthermore, as a result of mitochondrial permeability transition, procaspases-9 and -3 were cleaved into 37- and 17-kDa proteolytic products, respectively, which acted as executors of oridonin-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app