Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation

Tianfeng Chen, Yum-Shing Wong
International Journal of Biochemistry & Cell Biology 2009, 41 (3): 666-76
The role of selenium as potential cancer chemopreventive and chemotherapeutic agents has been supported by epidemiological, preclinical and clinical studies. Although cell apoptosis has been evidenced as a critical mechanism mediating the anticancer activity of selenium, the underlying molecular mechanisms remain elusive. In the present study, we showed that selenocystine (SeC), a naturally occurring selenoamino acid, induced caspase-independent apoptosis in MCF-7 breast carcinoma cells, which was accompanied by poly(ADP-ribose) polymerase (PARP) cleavage, caspase activation, DNA fragmentation, phosphatidylserine exposure and nuclear condensation. Moreover, SeC induced the loss of mitochondrial membrane potential (DeltaPsi(m)) by regulating the expression and phosphorylation of Bcl-2 family members. Loss of DeltaPsi(m) led to the mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF) which subsequently translocated into the nucleus and induced chromatin condensation and DNA fragmentation. MCF-7 cells exposed to SeC shown increase in total p53 and phosphorylated p53 on serine residues of Ser15, Ser20, and Ser392 prior to mitochondrial dysfunction. Silencing and attenuating of p53 activation with RNA interference and pifithrin-alpha treatment, respectively, partially suppressed SeC-induced cell apoptosis. Furthermore, generation of reactive oxygen species and subsequent induction of DNA strand breaks were found to be upstream cellular events induced by SeC. The thiol-reducing antioxidants, N-acetylcysteine and glutathione, completely blocked the occurrence of cell apoptosis. Taken together, these results suggest that SeC, as a promising anticancer selenocompound, induces MCF-7 cell apoptosis by activating ROS-mediated mitochondrial pathway and p53 phosphorylation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"