JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The role of particle composition on the association between PM2.5 and mortality.

Epidemiology 2008 September
BACKGROUND: Although the association between exposure to particulate matter (PM) mass and mortality is well established, there remains uncertainty about which chemical components of PM are most harmful to human health.

METHODS: A hierarchical approach was used to determine how the association between daily PM2.5 mass and mortality was modified by PM2.5 composition in 25 US communities. First, the association between daily PM2.5 and mortality was determined for each community and season using Poisson regression. Second, we used meta-regression to examine how the pooled association was modified by community and season-specific particle composition.

RESULTS: There was a 0.74% (95% confidence interval = 0.41%-1.07%) increase in nonaccidental deaths associated with a 10 microg/m3 increase in 2-day averaged PM2.5 mass concentration. This association was smaller in the west (0.51% [0.10%-0.92%]) than in the east (0.92% [0.23%-1.36%]), and was highest in spring (1.88% [0.23%-1.36%]). It was increased when PM2.5 mass contained a higher proportion of aluminum (interquartile range = 0.58%), arsenic (0.55%), sulfate (0.51%), silicon (0.41%), and nickel (0.37%). The combination of aluminum, sulfate, and nickel also modified the effect. These species proportions explained residual variability between the community-specific PM2.5 mass effect estimates.

CONCLUSIONS: This study shows that certain chemical species modify the association between PM2.5 and mortality and illustrates that mass alone is not a sufficient metric when evaluating health effects of PM exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app