COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables.

Nine fish species of commercial interest from six teleost families and two species of elasmobranchs were selected for characterisation of hepatic biomarkers used in early-warning assessment of pollutant exposure. The sampling was carried out in front of the Barcelona coast (NW Mediterranean) during December 2006 at shelf (53 m) and slope (660 m) depths. The enzymes considered included the antioxidant defence catalase (CAT) and glutathione reductase (GR), phase I ethoxyresorufin O-deethylase (EROD) and phase II glutathione S-transferase (GST). Protein yield (PY) was used as a general marker of hepatic protein synthesis. Significant interspecies differences were evidenced, although each marker varied independently. Enzymatic activities in teleosts were higher than in elasmobranchs; they were very low in Scyliorhinus canicula (mainly a benthic feeder), but not so low in Galeus melastomus (pelagic feeder). In relation to depth, shallow water, shelf-living species had higher metabolic activities. Trophic variables were significantly related to PY and EROD activity, and were especially high in benthic/suprabenthic feeders. Trophic level (deduced from stable isotopy) and stomach fullness were associated with all hepatic markers, except GR. Swimming capacity was related to all hepatic enzymes. Our findings can be applied, not only from the perspective of conservation ecology regarding pollution, but also in fisheries, due to the economic interest of the species involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app