JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Treatment with N-tosyl-l-phenylalanine chloromethyl ketone after the onset of collagen-induced arthritis reduces joint erosion and NF-kappaB activation.

N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) is known to inhibit NF-kappaB activation and the expression of inflammation mediators in cultured cells. We measured the potential of TPCK to inhibit the pathogenesis of collagen-induced arthritis by blocking NF-kappaB activation. Arthritis was induced in DBA/1J mice by the injection of bovine type II collagen in adjuvant on days 0 and 14. Mice received either TPCK (3 or 10 mg/kg, i.p.) or vehicle three times a week for 3 weeks starting on day 21. TPCK moderately reduced clinical disease activity scores, whereas it markedly suppressed histological indications of joint destruction. In vitro production of tumor necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1 from lipopolysaccharide-stimulated spleen cells was also reduced by in vivo treatment with TPCK. Proliferation of cells isolated from spleen or draining lymph nodes and production of interferon-gamma and interleukin-17 in response to stimulation with type II collagen was decreased by TPCK. Moreover, nuclear NF-kappaB activity induced by collagen immunization was significantly reduced in mice treated with TPCK. Finally, osteoclast differentiation of bone marrow cells induced by macrophage colony-stimulating factor and receptor activator of NF-kappaB ligand was completely inhibited by TPCK. These results indicate that TPCK attenuates collagen-induced arthritis and bone erosion by suppressing NF-kappaB activation and thus expression of inflammatory and osteoclastogenic genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app