Add like
Add dislike
Add to saved papers

Immobilization of 2,2'-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions.

In this study, the immobilization of 2,2'-dipyridyl onto bentonite was firstly carried out and it was then used for the adsorption of copper(II) ions from aqueous solutions. The variation of the parameters of pH, contact time, initial copper(II) concentration and temperature were investigated in the adsorption experiments. The XRD, FTIR, elemental and thermal analyses were performed to observe the immobilization of 2,2'-dipyridyl onto natural bentonite. The adsorption data obtained were well described by the Langmuir adsorption isotherm model at all studied temperatures. The results indicated that the maximum adsorption capacity was 54.07 mg g(-1) from the Langmuir isotherm model at 50 degrees C. The thermodynamic parameters indicated that the adsorption process is spontaneous, endothermic and chemical in nature. The kinetic parameters of the adsorption were calculated from the experimental data. According to these parameters, the best-fit was obtained by the pseudo-second-order kinetic model. The results showed that 2,2'-dipyridyl-immobilized bentonite can be used as the effective adsorbent for the removal of heavy metal contaminants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app