JOURNAL ARTICLE

Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation

Olga V Popova, Oksoon Yang, Karl-Josef Dietz, Dortje Golldack
Gene 2008 November 1, 423 (2): 142-8
18703123
Salt stress is an environmental factor that severely impairs plant growth and productivity. Salinity-induced transcript accumulation was monitored in the salt-sensitive Arabidopsis thaliana and the related salt-tolerant Lobularia maritima using cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library of salt-stressed L. maritima. The expression profiles revealed differences of the steady state transcript regulation in A. thaliana and L. maritima in response to salt stress. The differentially expressed transcripts include those involved in the control of gene expression as a transcription factor II homologue as well as signal transduction elements such as a serine/threonine protein kinase, a SNF1-related protein kinase AKIN10 homologue, and protein phosphatase 2C. Other ESTs with differential regulation patterns included transcripts encoding proteins with function in general stress responses and defense and included a peroxidase, dehydrins, enzymes of lipid and nitrogen metabolism, and functionally unclassified proteins. In a more detailed analysis the basic leucine zipper transcription factor AtbZIP24 showed differential transcript abundance in A. thaliana and L. maritima in response to salt stress. Transgenic AtbZIP24-RNAi lines showed improved growth and development under salt stress that was correlated with changed Cl(-) accumulation. The data indicate that AtbZIP24 functions as a transcriptional repressor in salt-stressed A. thaliana that negatively regulates growth and development under salinity in context of controlling Cl(-) homeostasis. Monitoring the differential and tissue specific global regulation of gene expression during adaptation to salinity in salt-sensitive and halotolerant plants is a promising and powerful approach to identify novel elements of plant salt stress adaptation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18703123
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"