JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spatial confinement of ultrasonic force fields in microfluidic channels.

Ultrasonics 2009 January
We demonstrate and investigate multiple localized ultrasonic manipulation functions in series in microfluidic chips. The manipulation functions are based on spatially separated and confined ultrasonic primary radiation force fields, obtained by local matching of the resonance condition of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific external transducers with refracting wedges placed on top of the chips. The force field in each channel segment is characterized by the use of micrometer-resolution particle image velocimetry (micro-PIV). The confinement of the ultrasonic fields during single- or dual-segment actuation, as well as the cross-talk between two adjacent fields, is characterized and quantified. Our results show that the field confinement typically scales with the acoustic wavelength, and that the cross-talk is insignificant between adjacent fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where flow-through-mode operation of a chip with flow splitting elements is used for two-dimensional pre-alignment and addressable merging of particle tracks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app