Add like
Add dislike
Add to saved papers

Administration of VEGF receptor tyrosine kinase inhibitor increases VEGF production causing angiogenesis in human small-cell lung cancer xenografts.

Angiogenesis is mediated mainly by vascular endothelial growth factor (VEGF), and VEGF causes rapid growth in cancers, including human small-cell lung cancer (SCLC). The anti-angiogenic strategy of treating cancer using VEGF receptor (VEGFR) inhibition is currently of great interest. We tested the effects of the VEGFR2 tyrosine kinase inhibitor (TKI) vandetanib on the proliferation of two kinds of SCLC cell lines: SBC-1 cells, with detectable VEGFR2 expression and MS-1-L cells, without detectable VEGFR2 expression. To evaluate the anti-tumor and anti-angiogenic effects of vandetanib in vivo, we grafted SBC-1 and MS-1-L cells into mice. After a 3-week treatment, we measured the tumor size and histologically evaluated necrosis and apoptosis using H&E and TUNEL staining, respectively. The microvessels in the xenografts were also quantified by immunostaining of CD31. Vandetanib did not affect the proliferation of SBC-1 cells, but stimulated the growth of MS-1-L cells. In the SCLC xenograft model, vandetanib inhibited growth and tumor angiogenesis in a dose-dependent manner in SBC-1 xenografts. Vandetanib inhibited the growth of MS-1-L xenografts at a low dose (<12.5 mg/kg/day), but it did not affect tumor size or change microvessel counts at a higher dose. Interestingly, secretion of VEGF increased significantly in the MS-1-L cell line in the presence of a high dose of vandetanib in vitro. The effects of vandetanib on tumor angiogenesis were different in SBC-1 and MS-1-L cell lines. Production of angiogenic factors such as VEGF by the tumor potentially stimulates tumor angiogenesis and results in the acquisition of resistance to VEGFR TKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app