JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling.

Here, we examined whether amyloid-beta (Abeta) protein participates in cell death and retinal function using three types of transgenic (Tg) mice in vivo [human mutant amyloid precursor protein (APP) Tg (Tg 2576) mice, mutant presenilin-1 (PS-1) knock-in mice, and APP/PS-1 double Tg mice]. ELISA revealed that the insoluble form of Abeta(1-40) was markedly accumulated in the retinas of APP and APP/PS-1, but not PS-1 Tg, mice (vs. wild-type mice). In APP Tg and APP/PS-1 Tg mice, immunostaining revealed accumulations of intracellular Abeta(1-42) in retinal ganglion cells and in the inner and outer nuclear layers. APP Tg and APP/PS-1 Tg, but not PS-1 Tg, mice had less NMDA-induced retinal damage than wild-type mice, and the reduced damage in APP/PS-1 Tg mice was diminished by the pre-treatment of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a gamma-secretase inhibitor. Furthermore, the number of TUNEL-positive cells was significantly less in ganglion cell layer of APP/PS-1 Tg mice than PS-1 Tg mice 24 h after NMDA injection. The phosphorylated form of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha), but not total CaMKIIalpha or total NMDA receptor 1 (NR1) subunit, in total retinal extracts was decreased in non-treated retinas of APP/PS-1 Tg mice (vs. wild-type mice). CaMKIIalpha and NR2B proteins, but not NR1, in retinal membrane fraction were significantly decreased in APP/PS-1 Tg mice as compared with wild-type mice. The NMDA-induced increase in p-CaMKIIalpha in the retina was also lower in APP/PS-1 Tg mice than in wild-type mice. In electroretinogram and visual-evoked potential recordings, the implicit time to each peak from a light stimulus was prolonged in APP/PS-1 mice versus wild-type mice. Hence, Abeta may impair retinal function by reducing activation of NMDA-receptor signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app