JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Facile synthesis of ordered magnetic mesoporous gamma-Fe2O3/SiO2 nanocomposites with diverse mesostructures.

On the basis of a sol-gel process, a facile, low cost, and one-step approach for preparing ordered magnetic mesoporous gamma-Fe(2)O(3)/SiO(2) nanocomposites by an evaporation-induced self-assembly (EISA) approach is presented. Various mesostructured silica materials (P6mm or Im3m) incorporated with different amounts of iron oxide (n(Si)/n(Fe) = 9/1, 8/2, 7/3, respectively) were synthesized and characterized by XRD, TEM, N(2)-sorption analyses, and superconducting quantum interference device (SQUID) magnetometer. The HCl-leaching experiments together with TEM micrographs and nitrogen sorption analysis suggested that most of the gamma-Fe(2)O(3) domains of several nanometers were embedded in the silica walls, rather than dispersed in the mesopores, which could cause the significant pore clogging reported in some studies. The release behaviors of lysozyme from these magnetic porous nanocomposites were investigated for the possible application of drug targeting and control release. The influence of iron precursors was also studied and a possible mechanism was proposed. The hydrolysis of Fe(3+) ions under weakly acidic conditions and the induced formation of Si-O-Fe bonds may account for the synthesis of this kind of nanocomposite. These multifunctional nanostructured materials would have a wide range of applications in toxin removal, catalysis, waste remediation, and biological separation as well as novel drug-carrier technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app