JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features.

Speech comprehension has been shown to be a strikingly bilateral process, but the differential contributions of the subfields of left and right auditory cortices have remained elusive. The hypothesis that left auditory areas engage predominantly in decoding fast temporal perturbations of a signal whereas the right areas are relatively more driven by changes of the frequency spectrum has not been directly tested in speech or music. This brain-imaging study independently manipulated the speech signal itself along the spectral and the temporal domain using noise-band vocoding. In a parametric design with five temporal and five spectral degradation levels in word comprehension, a functional distinction of the left and right auditory association cortices emerged: increases in the temporal detail of the signal were most effective in driving brain activation of the left anterolateral superior temporal sulcus (STS), whereas the right homolog areas exhibited stronger sensitivity to the variations in spectral detail. In accordance with behavioral measures of speech comprehension acquired in parallel, change of spectral detail exhibited a stronger coupling with the STS BOLD signal. The relative pattern of lateralization (quantified using lateralization quotients) proved reliable in a jack-knifed iterative reanalysis of the group functional magnetic resonance imaging model. This study supplies direct evidence to the often implied functional distinction of the two cerebral hemispheres in speech processing. Applying direct manipulations to the speech signal rather than to low-level surrogates, the results lend plausibility to the notion of complementary roles for the left and right superior temporal sulci in comprehending the speech signal.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app