JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Detection of exonic copy-number changes using a highly efficient oligonucleotide-based comparative genomic hybridization-array method.

Human Mutation 2008 September
Genomic copy-number variations (CNVs) involving large DNA segments are known to cause many genetic disorders. Depending on the changes, they are predicted to lead either to decreased or an increased gene expression. However, the ability to detect smaller exonic copy-number changes has not been explored. Here we describe a new oligonucleotide-based comparative genomic hybridization (CGH)-array approach for high-throughput detection of exonic deletions or duplications and its application to deletion/duplication analyses of the genes encoding CFTR, six sarcoglycans (SGCA, SGCB, SGCG, SGCD, SGCE, and SGCZ), and DMD. In this work we show the successful development of an array format containing 158 exons that collectively span eight genes and its clinical application for the rapid screening of deletions and duplications in a diagnostic setting. We have analyzed a series of 35 DNA samples from patients affected with cystic fibrosis (CF), Duchenne and Becker muscular dystrophies (DMD/BMD), or sarcoglycanopathies, and have characterized exonic copy-number changes that have been validated with other methods. Interestingly, even heterozygous deletions and duplications of only one exon, as well as mosaic deletions, were detected by this CGH approach. Our results showed that the resolution is very high, as abnormalities of about 1.5-2 kb could be detected. Since this approach is completely scalable, this new molecular tool will allow the screening of combinations of genes involved in a particular group of clinically and genetically heterogeneous disorders such as mental retardation, muscular dystrophies and brain malformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app