Generation of transducible versions of transcription factors Oct4 and Sox2

Manal Bosnali, Frank Edenhofer
Biological Chemistry 2008, 389 (7): 851-61
The transcription factors Oct4 and Sox2 are two of the main regulators of pluripotency in embryonic stem cells. Since the importance of non-genetic modification is continually increasing, particularly for therapeutic application of manipulated cells, the aim of the present study was to generate cell-permeant Oct4 and Sox2 proteins for the direct cellular delivery of active proteins. Protein transduction allowing cellular manipulation to circumvent genetic modification of target cells has recently been developed. We present a new expression vector system, pSESAME, that facilitates the generation of transducible proteins. Using pSESAME, both Oct4 and Sox2 were genetically fused with a TAT protein transduction domain that promotes cellular penetration. The recombinant purified Oct4 and Sox2 fusion proteins display DNA-binding properties comparable to their endogenous counterparts, and exhibit cellular entry and the ability to modulate the transcriptional machinery maintaining pluripotency of mouse embryonic stem cells. In a rescue assay we demonstrate that transducible Oct4 and Sox2 fusion proteins can compensate knockdown of Pou5f1 and Sox2, respectively. This study provides powerful tools for the modulation of stem cell properties without genetic interference.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"