Add like
Add dislike
Add to saved papers

Electronic and magnetic properties of manganese and iron-doped Ga(n)As(n) nanocages (n=7-12).

The electronic and magnetic properties of Mn- or Fe-doped Ga(n)As(n) (n=7-12) nanocages were studied using gradient-corrected density-functional theory considering doping at substitutional, endohedral, and exohedral sites. When doped with one atom, the most energetically favorable site gradually moves from surface (n=7-11) to interior (n=12) sites for the Mn atom, while the most preferred doping site of the Fe atom alternates between the surface (n=7,9,11) and interior (n=8,10,12) sites. All of the ground-state structures of Mn@Ga(n)As(n) have the atomlike magnetic moment of 5mu(B), while the total magnetic moments of the most stable Fe@Ga(n)As(n) cages for each size are about 2mu(B) except for the 4mu(B) magnetic moment of Fe@Ga(12)As(12). Charge transfer and hybridization between the 4s and 3d states of Mn or Fe and the 4s and 4p states of As were found. The antiferromagnetic (AFM) state of Mn(2)@Ga(n)As(n) is more energetically favorable than the ferromagnetic (FM) state. However, for Fe(2)@Ga(n)As(n) the FM state is more stable than the AFM state. The local magnetic moments of Mn and Fe atoms in the Ga(n)As(n) cages are about 4mu(B) and 3mu(B) in the FM and AFM states, respectively. For both Mn and Fe bidoping, the most energetically favorable doping sites of the transition metal atoms are located on the surface of the Ga(n)As(n) cages. The computed magnetic moments of the doped Fe and Mn atoms agree excellently with the theoretical and experimental values in the Fe(Mn)GaAs interface as well as (Ga, Mn)As dilute magnetic semiconductors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app