Add like
Add dislike
Add to saved papers

Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait.

Gait & Posture 2009 January
Initial contact (IC) and toe off (TO) times are essential measurements in the analysis of temporal gait parameters, especially in cerebral palsy (CP) gait analysis. A new gait event detection algorithm, called the high pass algorithm (HPA) has been developed and is discussed in this paper. Kinematics of markers on the heel and metatarsal are used. Their forward components are high pass filtered, to amplify the contact discontinuities, thus the local extrema of the processed signal correspond to IC and TO. The accuracy and precision of HPA are compared with the gold standard of foot contact event detection, that is, force plate measurements. Furthermore HPA is compared with two other kinematics methods. This study has been conducted on 20 CP children and on eight normal adults. For normal subjects all the methods performed equally well. True errors in HPA (mean+/-standard deviation) were found to be 1+/-23 ms for IC and 2+/-25 ms for TO in CP children. These results were significantly (p<0.05) more accurate and precise than those obtained using the other algorithms. Moreover, in the case of pathological gaits, the other methods are not suitable for IC detection when IC is flatfoot or forefoot. In conclusion, the HPA is a simple and robust algorithm, which performs equally well for adults and actually performs better when applied to the gait of CP children. It is therefore recommended as the method of choice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app