JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Essential oil of Curcuma wenyujin induces apoptosis in human hepatoma cells.

AIM: To investigate the effects of the essential oil of Curcuma wenyujin (CWO) on growth inhibition and on the induction of apoptosis in human HepG2 cancer cells.

METHODS: The cytotoxic effect of drugs on HepG2 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. DNA fragmentation was visualized by agarose gel electrophoresis. Cell cycle and mitochondrial transmembrane potential (Delta psi m) were determined by flow cytometry (FCM). Cytochrome C immunostaining was evaluated by fluorescence microscopy. Caspase-3 enzymatic activity was assayed by the cleavage of Ac-DEVD-R110. Cleaved PARP and active caspase-3 protein levels were measured by FCM using BD(TM) CBA Human Apoptosis Kit.

RESULTS: Treatment with CWO inhibited the growth of HepG2 cells in a dose-dependent manner, and the IC50 of CWO was approximately 70 mug/mL. CWO was found to inhibit the growth of HepG2 cells by inducing a cell cycle arrest at S/G(2). DNA fragmentation was evidently observed at 70 mug/mL after 72 h of treatment. During the process, cytosolic HepG2 cytochrome C staining showed a markedly stronger green fluorescence than in control cells in a dose-dependent fashion, and CWO also caused mitochondrial transmembrane depolarization. Furthermore, the results clearly demonstrated that both, activity of caspase-3 enzyme and protein levels of cleaved PARP, significantly increased in a dose-dependent manner after treatment with CWO.

CONCLUSION: CWO exhibits an antiproliferative effect in HepG2 cells by inducing apoptosis. This growth inhibition is associated with cell cycle arrest, cytochrome C translocation, caspase 3 activation, Poly-ADP-ribose polymerase (PARP) degradation, and loss of mitochondrial membrane potential. This process involves a mitochondria-caspase dependent apoptosis pathway. As apoptosis is an important anti-cancer therapeutic target, these results suggest a potential of CWO as a chemotherapeutic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app