Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice.

UNLABELLED: The Notch pathway is an evolutionary conserved, intercellular signaling pathway that plays an important role in cell fate specification and the embryonic development of many organs, including the liver. In humans, mutations in the Notch receptor ligand Jagged1 gene result in defective intrahepatic bile duct (IHBD) development in Alagille syndrome. Developmental abnormalities of IHBD in mice doubly heterozygous for Jagged1 and Notch2 mutations propose that interactions of Jagged1 and its receptor Notch2 are crucial for normal IHBD development. Because different cell types in the liver are involved in IHBD development and morphogenesis, the cell-specific role of Notch signaling is not entirely understood. We investigated the effect of combined or single targeted disruption of Notch1 and Notch2 specifically in hepatoblasts and hepatoblast-derived lineage cells on liver development using AlbCre transgenic mice. Hepatocyte differentiation and homeostasis were not impaired in mice after combined deletion of Notch1 and Notch2 (N1N2(F/F)AlbCre). However, we detected irregular ductal plate structures in N1N2(F/F)AlbCre newborns, and further postnatal development of IHBD was severely impaired characterized by disorganized ductular structures accompanied by portal inflammation, portal fibrosis, and foci of hepatocyte feathery degeneration in adulthood. Further characterization of mutant mice with single deletion of Notch1 (N1(F/F)AlbCre) or Notch2 (N2(F/F)AlbCre) showed that Notch2 but not Notch1 is indispensable for normal perinatal and postnatal IHBD development. Further reduction of Notch2 gene dosage in Notch2 conditional/mutant (N2(F/LacZ)AlbCre) animals further enhanced IHBD abnormalities and concomitant liver pathology.

CONCLUSION: Notch2 is required for proper IHBD development and morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app