JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice.

Molecular Therapy 2008 September
Duchenne muscular dystrophy (DMD), the most prevalent lethal genetic disorder in children, is caused by mutations in the 2.2-MB dystrophin gene. Absence of dystrophin and the dystrophin-glycoprotein complex (DGC) from the sarcolemma leads to severe muscle wasting and eventual respiratory and/or cardiac failure. There is presently no effective therapy for DMD. Several lines of evidence have suggested that methods to increase expression of utrophin, a dystrophin paralog, show promise as a treatment for DMD. Adeno-associated viral (AAV) vectors are a promising vehicle for gene transfer to muscle, but microutrophin transgenes small enough to be carried by AAV have not been tested for function. In this study, we intravenously administered recombinant AAV (rAAV2/6) harboring a murine codon-optimized microutrophin (DeltaR4-R21/DeltaCT) transgene to adult dystrophin(-/-)/utrophin(-/-) (mdx:utrn(-/-)) double-knockout mice. Five-month-old mice demonstrated localization of microutrophin to the sarcolemma in all the muscles tested. These muscles displayed restoration of the DGC, increased myofiber size, and a considerable improvement in physiological performance when compared with untreated mdx:utrn(-/-) mice. Overall, microutrophin delivery alleviated most of the pathophysiological abnormalities associated with muscular dystrophy in the mdx:utrn(-/-) mouse model. This approach may hold promise as a treatment option for DMD because it avoids the potential immune responses that are associated with the delivery of exogenous dystrophin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app