JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation.

Characterisation and identification of disulfide bridges is an important aspect of structural elucidation of proteins. Covalent cysteine-cysteine contacts within the protein give rise to stabilisation of the native tertiary structure of the molecules. Bottom-up identification and sequencing of proteins by mass spectrometry most frequently involves reductive cleavage and alkylation of disulfide links followed by enzymatic digestion. However, when using this approach, information on cysteine-cysteine contacts within the protein is lost. Mass spectrometric characterisation of peptides containing intra-chain disulfides is a challenging analytical task, because peptide bonds within the disulfide loop are believed to be resistant to fragmentation. In this contribution we show recent results on the fragmentation of intra and inter-peptide disulfide bonds of proteolytic peptides by nano electrospray ionisation collision-induced dissociation (nanoESI CID). Disulfide bridge-containing peptides obtained from proteolytic digests were submitted to low-energy nanoESI CID using a quadrupole time-of-flight (Q-TOF) instrument as a mass analyser. Fragmentation of the gaseous peptide ions gave rise to a set of b and y-type fragment ions which enabled derivation of the sequence of the amino acids located outside the disulfide loop. Surprisingly, careful examination of the fragment-ion spectra of peptide ions comprising an intramolecular disulfide bridge revealed the presence of low-abundance fragment ions formed by the cleavage of peptide bonds within the disulfide loop. These fragmentations are preceded by proton-induced asymmetric cleavage of the disulfide bridge giving rise to a modified cysteine containing a disulfohydryl substituent and a dehydroalanine residue on the C-S cleavage site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app