JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Apaf-1-deficient fog mouse cell apoptosis involves hypo-polarization of the mitochondrial inner membrane, ATP depletion and citrate accumulation.

Cell Research 2008 December
To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency, we examined spleen and bone marrow cells from Apaf1(+/+) (+/+) and Apaf1(fog/fog) (fog/fog) mice for initiator caspase-9 activation by cellular stresses. When the mitochondrial inner membrane potential (Deltapsim) was disrupted by staurosporine, +/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis, indicating the lack of apoptosome (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells. However, when a marginal ( approximately 20%) decrease in Deltapsim was caused by hydrogen peroxide (0.1 mM), peroxynitritedonor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m(2)), both +/+ and fog/fog cells triggered procaspase-9 auto-processing and its downstream cascade activation. Supporting our previous results, procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the genotypes. Cellular ATP concentration significantly decreased under the hypoactive Deltapsim condition. Furthermore, we detected accumulation of citrate, a kosmotrope known to facilitate procaspase-9 dimerization, probably due to a feedback control of the Krebs cycle by the electron transfer system. Thus, mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses, which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app