Journal Article
Review
Add like
Add dislike
Add to saved papers

Adenosine and renal tubular function.

PURPOSE OF REVIEW: Intrarenal adenosine is present in the cytoplasm of renal epithelial cells and in the extracellular space. Adenosine is generated at high levels in response to imbalance between energy demand and supply (e.g. increased tubular sodium chloride transport or hypoxia) and activates cell membrane adenosine receptors to affect renal vascular and tubular functions. Adenosine regulates renal sodium and water excretion via a myriad of effects on renal hemodynamic, glomerular filtration rate, renin secretion and direct effects on the renal tubule epithelium. This review examines the direct effects of adenosine on renal tubular epithelial transport in light of the most recent evidence and discusses some physiologic and pathophysiologic implications.

RECENT FINDINGS: Intrarenal adenosine affects proximal fluid and solute transport in a biphasic fashion. Under physiological conditions adenosine stimulates proximal tubular re-absorption, thus reducing the load delivered to the distal nephron. A supra-physiologic increase in adenosine such as in ischemia reduces reabsorption in the proximal tubule, thus reducing renal oxygen consumption.

SUMMARY: Intrarenal adenosine and its receptors have important regulatory functions in the renal epithelium. A complete understanding of this autocrine/paracrine system holds great potential for novel therapeutic strategies, such as the use of nucleoside analogues for reno-protection in renal ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app