Journal Article
Review
Add like
Add dislike
Add to saved papers

PHEX, FGF23, DMP1 and beyond.

PURPOSE OF REVIEW: We aim to review the biological properties of novel molecules that are members of a kidney-bone axis involved in the regulation of phosphate homeostasis. In addition, we describe how an improved knowledge of the mechanisms leading to changes in renal phosphate handling may lead to the development of novel therapeutic approaches.

RECENT FINDINGS: As yet, eight genes involved in the regulation of phosphate homeostasis have been identified through genetic studies. A key protein in this regulatory pathway is FGF23, which is made by osteocytes and activates renal KLOTHO/FGFR1 receptor heterodimers to inhibit renal phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. Gain-of-function mutations in FGF23, which render the hormone resistant to proteolytic cleavage, lead to increased phosphaturic activity. Furthermore, inactivating mutations in DMP1 and PHEX increase, through yet unknown mechanisms, FGF23 synthesis and thus enhance renal phosphate excretion. In contrast, loss-of-function mutations in FGF23 and KLOTHO, and abnormal O-glycosylation of FGF23 because of GALNT3 mutations, lead to diminished phosphate excretion. Extremely high levels of FGF23 are observed in chronic renal failure, which may contribute to the development of renal osteodystrophy.

SUMMARY: The analysis of rare genetic disorders affecting phosphate homeostasis led to the identification of several proteins that are essential for the renal regulation of phosphate homeostasis, although it is not yet completely understood how these proteins interact, and additional proteins are likely to contribute to these regulatory events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app