JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury.

A little is known about the proliferation and fate of neural stem cells in the subventricular zone (SVZ) after cerebral ischemia. However, how endogenous neural stem cells are activated in the premature brain is not clear, although basic fibroblast growth factor (bFGF) is important in neurogenesis. To investigate the effect of bFGF on the proliferation and differentiation of neural stem cells after brain ischemia, we observed cellular changes in the subventricular zone (SVZ) of 3-day-old rats (approximately equivalent to premature infants) using immunofluorescence assays, Western blot analysis, and real-time quantitative PCR methods. The bilateral common carotid artery (BCCA) was occluded in 108 animals, then half received bFGF 10ng/g. Besides, 54 rats without ischemia as normal control. Proliferating cells were labeled by bromodeoxyuridine (BrdU) through intraperitoneal injection in a pulsed or a cumulative protocol. Rats were killed at 4, 7, and 14 days after ischemic injury. The number of proliferating cells in the SVZ in bFGF-treated rats was higher than that in untreated rats; bFGF also promoted neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. Western blot analysis and real-time quantitative PCR assays confirmed these results. We suggest that bFGF promotes the repair of ischemia brain injury through increasing the proliferation of neural stem cells and their differentiation into neurons, astrocytes, and oligodendrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app