Add like
Add dislike
Add to saved papers

Ab initio study of phonon-induced dephasing of electronic excitations in narrow graphene nanoribbons.

Nano Letters 2008 August
Vibrational dephasing of the lowest energy electronic excitations in the perfect (16,16) graphene nanoribbon (GNR) and those with the C2-bond insertion and rotation defects is studied with ab initio molecular dynamics. Compared to single-walled carbon nanotubes (SWCNTs) of similar size, GNRs shows very different properties. The dephasing in the ideal GNR occurs twice faster than that in the SWCNTs. It is induced primarily by the 1300 cm (-1) disorder mode seen in bulk graphite rather than by the 1600 cm (-1) C-C stretching mode as in SWCNTs. In contrast to SWCNTs, defects exhibit weaker electron-phonon coupling compared to the ideal system. Therefore, defects should present much less of a practical problem in GNRs compared to SWCNTs. The predicted optical line widths can be tested experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app