Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ritonavir induces endoplasmic reticulum stress and sensitizes sarcoma cells toward bortezomib-induced apoptosis.

The biosynthesis of immunoglobulin leads to constitutive endoplasmic reticulum (ER) stress in myeloma cells, which activates the unfolded protein response (UPR). The UPR promotes protein folding by chaperones and increases proteasomal degradation of misfolded protein. Excessive ER stress induces apoptosis and represents a molecular basis for the bortezomib sensitivity of myeloma. Most solid malignancies such as sarcoma, by contrast, are poorly bortezomib sensitive and display low levels of ER stress. We hypothesized that pharmacologic induction of ER stress might sensitize malignancies to bortezomib treatment. We show that the HIV protease inhibitor ritonavir induces ER stress in bortezomib-resistant sarcoma cells. Ritonavir triggered the UPR, decreased the degradation of newly synthesized protein, but did not directly inhibit proteasomal active sites in the therapeutic dose range in contrast to bortezomib. Whereas neither bortezomib nor ritonavir monotherapy translated into significant apoptosis at therapeutic drug levels, the combination strongly increased the level of ER stress and activated PERK, IRE1, and ATF6, synergistically induced CHOP, JNK, caspase-4, and caspase-9, and resulted in >90% apoptosis. In summary, ritonavir increases the level of ER stress induced by bortezomib, which sensitizes bortezomib-resistant cells to bortezomib-induced apoptosis. Ritonavir may therefore be tested clinically to improve the sensitivity of solid malignancies toward bortezomib treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app